Theoretical and experimental study of the Suzuki-phase photonic crystal lattice by angle-resolved photoluminescence spectroscopy.

نویسندگان

  • Alfonso R Alija
  • Luis J Martínez
  • Pablo A Postigo
  • Jose Sánchez-Dehesa
  • Matteo Galli
  • Alberto Politi
  • Maddalena Patrini
  • Lucio C Andreani
  • Christian Seassal
  • Pierre Viktorovitch
چکیده

A complete theoretical and experimental analysis of the photonic band structure for the Suzuki-phase lattice is presented. The band diagrams were calculated by two-dimensional plane wave expansion and three-dimensional guided-mode expansion methods. Angle resolved photoluminescence spectroscopy has been used to measure the emission of the photonic crystal structure realized in active InAsP/InP slabs. Photonic bands with a very low group velocity along an entire direction of the reciprocal lattice have been measured, which may have important applications on future photonic devices. The experimentally determined dispersion is in very good agreement with the calculated photonic bands. The presence of defect modes produced by microcavities in the Suzuki-phase lattice has also been established.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Band Structure Measurements and Calculations of Epitaxially Grown GaN Based Photonic Crystal Slabs with Semipolar Quantum Wells

We report on the large area realization of GaN photonic crystal slabs with semipolar InGaN quantum wells (QWs) using laser interference lithography and selective area metalorganic vapour phase epitaxy (MOVPE). Directional extraction of guided modes was observed in angle-resolved photoluminescence spectroscopy (ARPL), and the photonic crystal slab dispersion relation was measured. A comparison o...

متن کامل

Investigating the Properties of an Optical Waveguide Based on Photonic Crystal with Point Defect and Lattice Constant Perturbation

In this paper, a photonic crystal waveguide with point defects and lattice constant perturbations of +5%, -5% are being investigated. Firstly waveguide structures with constant and specific parameters are being studied and photonic band gap diagrams for TE/TM modes are depicted; then pulse propagation in the frequencies available in the band gap are shown. After that, effects of parameters like...

متن کامل

Square Lattice Elliptical- Core Photonic Crystal Fiber Soliton-Effect Compressor at 1550nm

 In this paper, we investigate the evolution of supercontinuum and femtosecond optical pulses generation through square lattice elliptical-core photonic crystal fiber (PCF) at 1550 nm by using both full-vector multipole method (M.P.M) and novel concrete algorithms: symmetric  split-step Fourier (SSF) and  fourth order Runge Kutta (RK4) which is an accurate method to solve the general  nonlinear...

متن کامل

Spatial Resolution Enhancement in a 2D Photonic Crystal Based on Complex Square Lattice

We study the focusing properties of a two dimensional complex square-lattice photonic crystal (PC) comprising air holes immersed in Ge medium. The finite difference time domain (FDTD) method is utilized to calculate the dispersion band diagram and to simulate the image formation incorporating the perfectly matched layer (PML) boundary condition. In contrast to the common square PCs with the sam...

متن کامل

Design of Photonic Crystal Polarization Splitter on InP Substrate

In this article, we suggested a novel design of polarization splitter based on coupler waveguide on InP substrate at 1.55mm wavelength. Photonic crystal structure is consisted of two dimensional (2D) air holes embedded in InP/InGaAsP material with an effective refractive index of 3.2634 which is arranged in a hexagonal lattice. The photonic band gap (PBG) of this structure is determined using t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 15 2  شماره 

صفحات  -

تاریخ انتشار 2007